At IEEE-3D IC 2009, San Francisco, CA

Paul Werbaneth,Vice President – Marketing and Applications, Tegal Corporation

Just back from a week hiking in Yosemite (thank you John Muir!) and in the Bridgeport – Twin Lakes – Matterhorn Peak area (thank you Gary Snyder/ Jack Kerouac and all past-present-future dharma bums).  Bodie, CA, an abandoned gold mining town at the end of the world (at the end of a three-mile washboarded dirt road, really, off a twelve-mile country road, off CA 395) gives literal proof to the phrase “a flash in the pan,” having been a town of ten thousand upstanding, barely standing, or once-standing citizens only 125 years ago.  What’s left now, with the gold run out, is a collection of highly weathered wooden buildings (most barely standing), a book’s worth of stories great, ghostly, and sad, and a permanent population of zero.  Monument to an American Ozymandias, installed and forgotten over the short span from the time of my grandparents’ births to today:

“Look on my works, ye Mighty, and despair!”

Nothing beside remains.  Round the decay

Of that colossal wreck, boundless and bare,

The lone and level sands stretch far away.

(Thank you Percy Bysshe Shelley.)

But not so here at the Hyatt Regency Embarcadero in San Francisco, where the talk is all about 3D System Integration (www.3dic-conf.org/) .  Now you might have been led to think the papers and discussions today would have all been about 300mm CMOS Logic and NAND Flash stacked integration using through silicon vias, but almost all the papers today (OK, about 75% of the papers) talked about integrating MEMS components with logic, and other functions, using 3D techniques (including TSVs, in situ, or TSVs in interposers), in order to create something new.  Something disruptive.  Something super smartphone. (Just what is the right label for what follows “smartphone”?)

Your supersmartphone will likely have a Dream Chip (Morihiro Kada, Association of Super-Advanced Electronics Technologies, “Development of functionally innovative 3D-integrated circuit technology”) on-board, doing what it is Dream Chips do, perhaps brought to wide-spread commercialization by Qualcomm (Matt Nowak, “High density silicon stacking – how the fabless supply chain impacts technology decisions”).  Something more from Japan, from Tohoku University, hot-bed of MEMS development:  “Heterogeneous integration technology for MEMS-LSI multi-chip module” (K.W. Lee).  (I’d keep my eye turned toward Sendai based on the data here.)

A very interesting paper from the University of Pittsburgh, “3D integrated circuits for lab-on-chip applications (Samuel Dickerson) pulled together MEMS, 3D integration, and the medical research expertise for which Pitt is so well known.  Just waiting for MIT Lincoln Labs to send back the fabricated chip so Pitt can test it.

And, shades of Project Sun SPOT (MEC 2008), Philips (Ric van Doremalen) told us today about a “Miniature wireless activity monitor using 3D system integration.”  It’s got a radio, it’s got a battery, it’s got an antenna, logic, integrated passives, and it’s got a MEMS accelerometer, integrated into about one cubic centimeter of total space.  All for a healthier, better, wirelessly connected you.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 181 other followers

%d bloggers like this: