Who’s Driving the MEMS Evolution Revolution Now? (Part 2 of 3)

I am pleased to bring you the second part of a three part series on the MEMS Evolution Revolution, written by my colleague, and long-time MEMS industry insider, Howard Wisniowski.  So far in this series, Howard has taken us with him to “visit” member company Qualtré, and taught us about bulk acoustic wave (BAW) solid state MEMS gyroscopes.  In part 2, we will begin to learn about radio frequency (RF) MEMS, an innovative application called “Tunable Antennae”, and a start up who is pioneering the advances of this new technology.

I hope you are as excited as I am to read this series and I welcome you share your stories of other MEMS start ups that are breaking out in their own markets, whether it be in agriculture or acoustics; healthcare or helicopters. MEMS truly is everywhere and it’s likely the innovative smaller companies who will spread it further, faster and for longer. Viva la Revolution!

Who’s Driving the MEMS Evolution Revolution Now?

Part 2 of 3

Howard Wisniowski, Freelance Editor

What’s most exciting about MEMS technology is watching how it is evolving. As a participant in the MEMS industry for over 15 years, I have witnessed much of the evolution and revolution take place. In Part 1, I highlighted an innovative and disruptive inertial MEMS technology referred to as bulk acoustic wave (BAW) technology. This new class of solid state stationary gyroscopes is opening up many new application possibilities by being able to meet the performance, size, cost, and reliability requirements for many emerging MEMS inertial sensor applications.

Part 2 focuses on radio frequency (RF) MEMS and a very innovative and disruptive application referred to as tunable antennae. It is hard to believe that one of the most important parts of a mobile phone is the antennae, which is very low-tech. With today’s smartphones that incorporate very sophisticated technology from gazillion-transistor CPUs controlling everything to state-of-the-art retina display on the front ends, the antennae for GSM, LTE, WiFi, and Bluetooth, are simply pieces of metal.

We all can recall when devout iPhone followers were outraged by the fact that an Apple device could be defeated when water-filled, fleshy fingers touched the metal antenna, it attenuated (weakened) the signal and resulted in dropped calls. The fact of the matter is that every smartphone has similar issues. Fortunately, for every mobile device maker, there’s an alternative to normal antennae: RF MEMS.

RF MEMS, as the name suggests, are semiconductor chips that can alter their physical (mechanical) state with the application of movable structures. When applied to an antenna, RF MEMS can be used to make antennae that automatically tune and re-tune themselves to both incoming and outgoing signals. For example, if one should put a finger on an RF MEMS antenna it can automatically re-tune itself so that no calls are dropped. What’s more, this is an emerging application where IHS iSuppli has reported that sales of RF MEMS devices are could reach $150 million by 2015.

RF MEMS Antenna Tuners

At WiSpry, a start up in Irvine, CA and another MIG member, they are pioneering advances in the field of tunable RF technology and addressing the emerging needs of modern smartphones.  Today’s smartphones have a number of radios to deal with — GSM, 3G, CDMA, W-CDMA, LTE, Bluetooth, WiFi, and even FM and TV radios in some cases. Each one has its own silicon circuitry and usually its own antenna too. Additionally, there are now a burgeoning number of frequency bands needing to be supported for 4G LTE cellular – ranging today from 700 Mhz to around 3700 Mhz. What’s more, the 3GPP standards are now allowing more than 43 different frequencies and there is an emerging demand for “Carrier Aggregation” in LTE – Advanced, the newest set of standards, which will have simultaneous “aggregation” of multiple frequencies on a single phone, allowing huge bandwidth improvements.

WiSpry’s RF MEMS-based antenna tuner technology will play pivotal roles in these advancements by potentially enabling devices with just a single antenna and transceiver. By reducing the number of necessary components in a handset while allowing the radio front-end to be programmed to work in any frequency band and with any radio standard using the same set of hardware, a “World-Phone” architecture is possible and truly disruptive. Finally thanks to MEMS, the antennae on mobile devices will actually function more efficiently as they were initially intended – to carry and convey data and yes, even your phone calls.

Uncategorized

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s